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A great number of biological structures are composed of fibers �elastin, collagen, etc.� dispersed on an
aqueous matrix in such a complex way that a detailed mechanical analysis based on microconstituents is, for
practical purposes, out of reach. Consequently, the preferred approach to the mechanical behavior of these
materials is based on setting up of constitutive equations that homogenize the behavior while capturing their
main microstructural features. This work presents a simple macroscopic model for fiber-reinforced materials
with deformable matrices, especially suited to many biological structural tissues. The constitutive equation is
derived by imposing equivalence between the virtual works of both the fiber-reinforced and the equivalent
continuum media, showing that it is independent of the control volume used for such equivalence. The model
is particularized to incompressible materials, and an extension to orthotropic biological fibers is shown. Nu-
merical simulations of uniaxial tests on silk fibers demonstrate the model’s ability to capture the progressive
alignment of the microconstituents under large deformations.
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I. INTRODUCTION

There is a growing interest in understanding the mechani-
cal behavior of fiber composites with highly deformable ma-
trices. Most biological structural components are composites
based on a fluidlike matrix and fibers �collagen, elastin, fi-
broin, etc.�. The attractiveness lies not only in solving the
involved problem of structure-property relations, but in the
power of biomimetism; if the effect of micromechanisms on
macroscopic properties can be unveiled, these properties can
be enhanced by modifying the properties of fibers and ma-
trices.

Several approaches have been presented for studying the
micromechanics of biological fiber composites, such ap-
proaches depending to a large extent on the information be-
ing sought after. Scientists working on the structural mechan-
ics of such complex systems are drawn in two opposing
directions.

�i� Macroscopic models for the description of the continu-
ous media where mechanical analysis requires simplification
and properties are randomized or, when making use of mac-
roscopic parameters, they commonly lack physical meaning
and, more often than not, are coupled. The constitutive equa-
tions for these models are developed in general using two
different approaches, with each based on a different view-
point, either molecular or continuum.

The molecular viewpoint introduces microstructural ele-
ments, usually with chain configuration, that represent single
macromolecules or other microscopical units. The freely
jointed chain �1� and wormlike chain �2� models are typically
used to evaluate the behavior of individual chains that are
assembled into three-dimensional networks via a discrete
spatial representation �like three-chain �3� and eight-chain
models �4�� or by a continuous distribution �full-chain model
�5��. Finally, the macroscopic constitutive equation is derived
from multichain assemblies �6�. Such an approach has been
recently used to propose a model for cytoskeletal networks,
natural fibers, and soft biological tissues �7�.

Hierarchical models can be included within the molecular
viewpoint since they build the macroscopic assembly from
microscopic units, but they use a different strategy. Modules
of the same hierarchical level assemble to produce a supra-
module �i.e., a module of the next higher complexity level�
in a merging process up to the whole structure. Interactions
between modules at the same hierarchical level are as-
sembled to obtain the response function of the corresponding
supramodule, which, in turn, is used to build the response of
the next-level supramodule. To moderate the increasing com-
plexity of higher levels, hierarchical models usually concen-
trate on a reduced set of parameters �for example, force and
extension� that are modeled by simple explicit relationships
at the deepest levels �8�.

The continuum viewpoint makes a phenomenological ap-
proach to the macroscopic behavior by introducing constitu-
tive equations whose parameters are fitted to the experimen-
tal data. Constitutive equations for soft biological materials
have been developed within the finite-strain framework by
Fung and other researchers �see, for example, �9,10� and ref-
erences therein�, with most using polynomial expansions of
the strain invariants with a large number of fit parameters.

To circumvent the incorporation of a large number of ma-
terial parameters, especially in order to model the anisotropic
behavior of fiber-reinforced tissues, Holzapfel and co-
workers �11� have explicitly introduced the fiber geometry in
the constitutive equation by means of the specific invariants,
within the framework proposed by Spencer �12�. Neverthe-
less, the benefits of the reduction of material parameters are
balanced by a severe increase in computational difficulty. In
addition, the problem of physical identification of material
parameters remains unsolved.

�ii� Microscopic models aiming at reflecting the complex
reality are usually very involved, not only due to the huge
amount of parameters, but also to the difficulty in imple-
menting numerical computations. Models for biological fi-
bers usually descend into the nanometer scale, requiring
elusive information about the molecular network like me-
chanical properties of different chemical bonds �13� or mor-
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phological structure �14�. Notwithstanding that these models
help to understand the role of basic molecular and supramo-
lecular units, their results are still far away from being ap-
plicable to arbitrary macroscopic configurations �15,16�.

The purpose of this paper is to present a simple macro-
scopic continuum model with deep insight into the physical
meaning, as it considers fiber realignment during matrix de-
formation. This goal is achieved by means of the constitutive
equation of the microfibril, where the relevant aspects and
parameters are selected. The model naturally integrates the
relevant microfibril properties and the macroscopic con-
tinuum behavior in a simple formulation applicable to any
macroscopic situation and uses a reduced set of parameters,
all with physical significance. The continuum model pre-
sented in this paper aims at filling the existing gap between
the involved �and limited� micromolecular models and mac-
roscopic phenomenological models without resorting to un-
realistic assumptions or unphysical parameters.

The paper is structured as follows: First, the model is
justified by forcing the continuum to give the same mechani-
cal dissipation as the fiber-reinforced material under any ar-
bitrary motion. The second section deals with the particular-
ization of the model for incompressible materials. The paper
closes with an application of the model to tensile stretching
of silk fibers, where anisotropy, strong nonlinearity, and mi-
crofibril alignment during different mechanical loading were
considered and were found to agree largely with experimen-
tal measurements.

II. MODEL

A. Introduction and objective

A great number of fiber-reinforced materials, either natu-
ral or artificial, can be accurately described as a composite
consisting of a deformable matrix with one or more sets of
filaments embedded �Fig. 1�a��. For these materials, most of
their mechanical performance is due to the progressive align-
ment and recruitment upon straining of their constituent mi-
crofibrils and, consequently, any realistic macroscopic ap-
proach should take into account this strengthening
mechanism and its dependence on the deformed geometry.

The purpose of this paper is to establish a macroscopic
model, capable of reproducing the mechanical response of
the involved fiber-reinforced material, without dealing with
mesoscopic details during every loading step. The mechanics
of continuous media provides the appropriate framework for
dealing with problems like the one mentioned above, since it
naturally deals with large deformations and provides sound
measurements for stress and strain.

For this purpose an equivalent continuum macroscopic
model for fiber-reinforced materials with perfectly deform-
able matrices is derived by forcing the model to give the
same mechanical dissipation as the fiber-reinforced material
under any arbitrary motion. To this end, the mechanical
power of forces acting on the fiber composite under a given
deformation is first computed, and this value is used to de-
duce the stress tensor that would produce the same rate of
work for the motion.

B. Fiber-reinforced material

The actual material is assumed to consist of sets of mi-
crofibrils dispersed into a deformable matrix in such a way
that microfibrils can be considered continuous and straight
through any sufficiently small control volume, like the one
illustrated in Fig. 1. We also assume that no force is trans-
mitted through the matrix in the composite material—i.e.,
that the matrix is perfectly deformable and forces only build
up in the microfibrils as a consequence of deformation. In the
initial configuration, taken as reference, materials are un-
stressed.

With reference to the control volume in Fig. 1 and accord-
ing to the hypotheses stated above, the only forces acting on
it are the forces on the microfibrils.

The mechanical power of the instant force T acting on a
given set of microfibrils of length lf in the current �instant,

deformed� configuration is Tl̇f, where the overdot refers to
time derivation, and its ratio per unit volume of microfibrils
in the current configuration can be computed as

Tl̇f

aflƒ
=

T�̇ f

af� f
, �1�

where af is the current cross section of the microfibrils and
� f the stretching, given by

� f =
lf

Lf
, �2�

with Lf being the length of the microfibrils in the reference
�initial, unstressed� configuration.

The mechanical power per unit volume of composite ma-
terial is easily obtained by multiplying Eq. �1� by f , the mi-
crofibrils volume fraction, assumed constant at a given �ma-
terial� point during the deformation:

T�̇ f

af� f
f . �3�

In the referential description, Eq. �3� becomes

aƒ,1 θ

lƒ
θ aƒ

θ = Σ aƒ,i
θ

MICROSCOPIC COMPOSITE MACROSCOPIC CONTINUUM

Equivalent set of
microfibrils for θ

T

CONTROL VOLUME

aƒ,2 aƒ,i

(a) (b)

FIG. 1. Composite material and continuum equivalent.
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f

J
�̇ fsƒ, �4�

where we have introduced sf, the nominal stress in the mi-
crofibrils, defined as

sƒ =
T

Af
, �5�

and made use of the fact that the current volume aflf is equal
to JAfLf, Af being the initial cross section and

J = det F �6�

the determinant of F, the deformation gradient that connects
the reference and the current configuration. Labeling x and X
the position vectors in the current and reference configura-
tions, respectively, F is given by

F = grad x , �7�

where “grad” is the gradient operator with respect to X.
The stretching in the microfibril, � f, can be expressed as a

function of F: namely �17�,

� f = + �CN · N , �8�

where N is the unit vector along the microfibril in the refer-
ence configuration and C=FTF the right Cauchy-Green
strain tensor. Substitution of the time derivative of Eq. �8�
into �4� yields

fsƒ

2J

ĊN · N
�CN · N

�9�

and recalling that

ĊN · N = tr�ĊN � N� = tr�Ċ�N � N�� = tr��N � N�Ċ� ,

�10�

since the trace of the tensor product ��� of two vectors is
their dot product, we finally arrive, for the mechanical power
per unit volume at a given set of microfibrils, in the referen-
tial description, at

tr� fsƒ

2J�CN · N
�N � N�Ċ� . �11�

The power done by forces acting on all sets of microfibrils
across the control volume, each set referred by the index �
�see Fig. 1�, is computed by adding up their contributions:

Pf = �
�

tr� fƒ
�sƒ

�

2J�CN� · N�

�N� � N��Ċ�
= tr�

�

fƒ
�sƒ

�

2J�CN� · N�

�N� � N��Ċ . �12�

Equation �12� gives the mechanical power per unit volume in
the reference configuration of the forces acting on the control
volume which, interestingly, has no more requirements on its
size and shape than to enclose straight strands of mi-
crofibrils. Consequently, taking the smallest volume that
meets the aforesaid condition as the control volume, Eq.

�12�, can be regarded as the mechanical power per unit vol-
ume at a given point.

C. Macroscopic continuum material

In the equivalent continuum model, the mechanical power
per unit volume in the current configuration is ordinarily
called the stress power, as shown, for example, in Ref. �17�,
and is computed via the equation

tr��D� , �13�

where � is the Cauchy stress tensor and D the symmetric

part of the velocity gradient, L= ḞF−1. The stress power re-
ferred to a unit volume in the reference configuration can be
expressed as �17�

P� =
1

2
tr�SĊ� , �14�

where the second Piola-Kirchoff stress tensor S=JF−1�F−T

has been introduced.

D. Mechanical equivalence

The mechanical equivalence between the continuum
model and the composite material is set by forcing Pf = P�

for all possible motions, with the help of Eqs. �12� and �14�:
i.e.,

tr�1

2
SĊ� = tr�

�

fƒ
�sƒ

�

2J�CN� · N�

�N� � N��Ċ �15�

for any Ċ.
The equivalence shown in Eq. �15� is a customary proce-

dure to link the microscopic description of a physical system
�right-hand side of the equation� and its corresponding mac-
roscopic equivalent �left-hand side� while preserving the
macroscopic mechanical power �stress power� dissipated or
stored by the system �18,19�. This equivalence—presented in
different forms—emerges in a number of problems related to
molecular or microscopic models such as the statement of
the stress tensor from the atomic or molecular interactions by
application of the virial theorem, as shown, for example, in
�20–22�.

However, different from other approaches, Eq. �15� is
based only on the constitutive behavior of microfibrils whose
complex response is not modeled from molecular interac-
tions, thus avoiding the usual assumptions in molecular dy-
namics �intermolecular potentials, time averages, and peri-
odic systems�. Particularly important is the fact that Eq. �15�
applies without regard to whether the forces in the mi-
crofibrils are conservative or not, as is clearly illustrated in
the application to silk fibers in the last section of this paper.

Fulfillment of Eq. �15� for any deformation process leads
to the condition

S = �
�

fƒ
�sƒ

�

J�CN� · N�

�N� � N�� , �16�

which gives the constitutive relationship for the equivalent
model in terms of the second Piola-Kirchoff stress and the
right Cauchy-Green strain tensors.
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Equation �16� has to be complemented with the relation-
ship between the nominal stress sf

� and the elongation � f
�

within the microfibrils,

sƒ
� = sƒ

���ƒ
�� = sƒ

���CN� · N�� , �17�

which supplies the micromechanical information to the
model. As shown below in Sec. IV, the tensile behavior of
individual microfibrils is described by means of Eq. �17�,
which can be adequately assembled to reveal the key micro-
mechanisms that make up the mechanical behavior of the
fiber-reinforced material.

Equations �16� and �17� completely define the constitutive
relationship of the equivalent continuum model. It is worth
remarking that Eq. �16� does not presume any given material
behavior, either elastic, plastic, or time dependent, which is
entirely controlled by the functional form of Eq. �17�. Thus,
Eq. �16� will account for geometrical changes induced during
the deformational process like fiber orientation.

A possible extension to non-perfectly-deformable matri-
ces can be readily implemented by introducing an extra term
on the right-hand side of Eq. �15� to account for the stress
power of the matrix. As an example, in the case of hyper-
elastic matrices �i.e., matrices with a strain energy function
W� where the stress power can be expressed as

tr���W /�C�Ċ�, Eq. �16� would have to be modified by add-
ing the term �W /�C to its right-hand side.

III. PARTICULARIZATION FOR INCOMPRESSIBLE
MATERIALS

The particularization of Eq. �16� to incompressible mate-
rials can be carried out by introduction of a Lagrange multi-
plier associated with the constraint

d

dt
�det C� = 0, �18�

which is derived directly from the condition of volume con-
stancy J=�det C=1.

Equation �18� can be transformed to read

d

dt
�det C� = det C tr�ĊC−1� = tr�C−1Ċ� = 0 �19�

and the mechanical equivalence, Eq. �15�, is now given by

tr�1

2
SĊ� = tr�

�

f f
�sf

�

2�CN� · N�

�N� � N��Ċ − p*tr�C−1Ċ�

�20�

for any Ċ, p* being the Lagrange multiplier.
The resulting stress tensor is then dependent on p*, which

represents an arbitrary hydrostatic pressure induced by the
constraint

S = �
�

f f
�sf

�

�CN� · N�

�N� � N�� − p*C−1. �21�

Recalling the definitions of S=J F−1�F−T and C=FTF, Eq.
�21� can be written in terms of the Cauchy stress tensor �,

� = �
�

f f
�sf

�

	FN�	
�FN� � FN�� − p*I , �22�

where use has been made of incompressibility J=1 and the
fact that the elongation in the microfibril,

� f
� = �CN� · N� = �FTFN� · N� = �FN� · FN� = 	FN�	 ,

�23�

is the norm of the vector FN�.
Taking deviators in Eq. �22� and rearranging terms, the

solution for the Cauchy stress for incompressible materials is

� = �
�

f f
�sf

�
FN� � FN�

	FN�	
−

1

3
	FN�	I� − pI , �24�

which in combination with Eq. �17� completely defines the
model. It is worth noting that p in Eq. �24� now represents
the total hydrostatic pressure and has to be calculated from
boundary conditions and/or equilibrium.

Use of Eqs. �16� and �24� in a given problem assumes
knowledge of the specific fiber distribution and orientation
across the material in the reference configuration. This is
accomplished through the spatial distribution function
��N ,X�, which can be defined as the volume fraction of
microfibrils per unit solid angle having the direction N at a
given position X in the reference configuration �Fig. 2�.
Therefore, the fraction of microfibrils in the solid angle d�
around N at a given position X will be equal to

df f = ��N,X�d� . �25�

The total volume fraction f f at point X is obtained by inte-
gration of Eq. �25� over all the directions: i.e.,

dfƒ = Γ (N,X)dΩ

x
X

N

n

dfƒ = γ (n,x)dω

X

N

x

n

REFERENCE CONFIGURATION CURRENT CONFIGURATION

F

Θ

Φ

θ

φ

dω

dΩ

FIG. 2. Orientation of microfibrils in the reference and current
configurations and solid angles.

PLANAS, GUINEA, AND ELICES PHYSICAL REVIEW E 76, 041903 �2007�

041903-4



f f�X� = �
1/2 space

��N,X�d� , �26�

where we have arbitrarily assigned to the microfibrils a posi-
tive orientation with N ·e1�0, e1 being the unit vector in the
direction of the x1 axis �Fig. 2�, and performed the integral
over the upper half-space.

Therefore, the continuous counterpart of the discrete
equation �24� to compute Cauchy stress from the distribution
of microfibrils is

��X� = �
1/2 space

sf
FN � FN

	FN	
−

1

3
	FN	I���N,X�d� − pI .

�27�

In the case that there is only one set of microfibrils, � takes
the form of a Dirac delta function. If microfibrils are lined up
along the x1 axis, � can be expressed as

� = f f
	���

2
 sin �
, �28�

	��� being the unidimensional delta function and � the
angle between N and e1.

As deformation develops in the solid, microfibrils pro-
gressively align and change their orientation. The relation-
ship between the reference orientation, defined by N, and the
current orientation n is given by

n =
FN

	FN	
, �29�

since n is the unit vector of the transformed direction F N.
In the current configuration �Fig. 2�, the fraction of mi-

crofibrils in the solid angle d� around the unit vector n is
equal to

df f = ��n,x�d� , �30�

��n ,x� being the spatial distribution function in the current
configuration.

The function � is related to � by

��n,x� = 	FN�	3/2��N,X� , �31�

which is obtained by identifying Eqs. �25� and �30� and using
the relationship between the solid angles in the reference and
current configurations with J=1.

The degree of orientation of microfibrils at a given time is
characterized by the orientation index , which measures the
mean instant alignment with respect to a constant direction.
The orientation index with reference to the x1 axis is defined
as

�x� =
� ��n,x�n · e1d�

� ��n,x�d�

=
1

f f
� ��n,x�n · e1d� , �32�

where, as usual, the integrals in the solid angle are extended
to the upper half-space. The orientation index can be inter-
preted as the ratio between the projected length of mi-

crofibrils along x1 and their total length at a given instant.
The orientation index can be written as a function of �

using Eqs. �25�, �29�, and �30�: namely,

�X� =
1

f f
� ��N,X�FN · e1

	FN	
d� , �33�

where only values in the reference configuration are consid-
ered.

Since we have considered only microfibrils with N ·e1
�0, Eqs. �32� and �33� do not give =0 for the isotropic
case—� �or ��=const—but instead a value = 1

2 is obtained.
When microfibrils are perfectly aligned �n ·e1=1� the orien-
tation index equals unity.

IV. APPLICATION TO TENSILE STRETCHING
OF SILK FIBERS

The continuum model described above is specially suited
for modeling biological fibers since it is able to capture the
anisotropy, strong nonlinearity, and hierarchy exhibited by
these materials due to the presence of a network of mi-
crofibrils embedded in a highly compliant matrix �16�. The
model naturally links the mechanical response with the de-
gree of internal orientation and, like other continuum mod-
els, it can be easily implemented in numerical programs. As
an exemplification of its capabilities, this section shows a
simulation of the effect of internal alignment on the tensile
properties of spider dragline silk fibers.

Spider dragline silk or MAS, as it is usually labeled after
the gland where it is produced—Major Ampullate—shows a
striking combination of tensile strength and elongation at
breaking that has fostered a great deal of research work to
unravel its basis and to mimic such outstanding properties in
biomimetic replicas �23–28�. MAS fibers are composed of
amorphous flexible chains strongly hydrogen bonded, rein-
forced by crystallites �29�, and their tensile behavior is
highly determined by the network of hydrogen bonds and the
degree of molecular orientation, as has been demonstrated by
the authors elsewhere �30�. Whereas MAS fibers tested in air
behave as glassy polymers due to hydrogen bonding �31�,
fibers tested in water show an elastomeric behavior as the
result of water molecules disrupting the network of hydrogen
bonds �32�. Stretching leads to an extension of a network of
protein chains and a rotation of microcrystallites, and in-
duces a net molecular alignment parallel to the fiber axis
�29,33�. The authors have shown that deformation of MAS
silk essentially takes place under conditions of volume con-
stancy �34�.

Until now, very few models have been developed for
MAS fibers, all of them resorting to a detailed microstruc-
tural description in terms of a large number of parameters
whose determination is very elusive �31�. Here we present a
first attempt to develop a model for spider silk that, despite
its macroscopic nature, keeps track of the internal alignment
and other microstructural features.

In the following we assume that the fiber is homogeneous
and transversally isotropic—i.e., that its properties are in-
variant along directions perpendicular to the fiber axis—and
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that it is axially loaded. Taking for convenience a Cartesian
coordinate system whose x1 axis is aligned with the fiber
�Fig. 3�, the unit vector N characterizing the initial orienta-
tion of microfibrils is written as

N = cos �e1 + sin � cos �e2 + sin � sin �e3. �34�

According to the hypotheses above, the distribution function
��N ,X� will only be a function of the polar angle � with
respect to the symmetry axis and independent of the azi-
muthal angle � and the position X.

Due to symmetry, the Cauchy stress tensor at any point of
the fiber is

� = � 0 0

0 0 0

0 0 0
� , �35�

� being the true tensile stress, defined as

� =
T

a
, �36�

where T is force applied and a the current cross-sectional
area of the fiber.

The components of the deformation gradient tensor F are

F = � 0 0

0 1/�� 0

0 0 1/��
� , �37�

where � is the axial stretching of the fiber. Note that like the
stress tensor, F does not depend on the point considered and
that det F=1, as required by incompressibility �34�. Equa-
tions �35� and �37� show that this simple problem is me-
chanically determined by only two macroscopic external pa-
rameters: namely, the tensile true stress � and the axial
stretching �.

The link between � and � is established via the constitu-
tive equation determined by expression �27� and the relation-
ship between the stress and the deformation in the mi-
crofibrils, Eq. �17�, for which a simple analogical model is
postulated, capturing the well-known behavior of spider silks
�Fig. 4�; a nonlinear spring representing the stretching and
orientation of molecular chains in the rubbery state �i.e., with
the network of hydrogen bonds deactivated�, in parallel with
a skidding block with a linear spring to account for the
breaking of hydrogen bonds and molecular slippage when
the fiber is over the glass transition.

The nominal stress due to the nonlinear spring can be
written as

sf
r = K�1 − � f�4, �38�

which provides a good approximation to the elastomeric be-
havior of spider silk for � f �3. The conditions where spider
silk behaves elastomerically have been determined by the
authors and can be found elsewhere �35�.

Molecular slippage and breaking of hydrogen bonds over
the glass transition is simulated by the use of a skidding
block with stress threshold �y in series with a linear spring
with elastic modulus E. The total nominal stress in the mi-
crofibril, sf, will be the sum of the stress due to the stretching
and orientation of molecular chains, sf

r plus the stress due to
slippage and hydrogen bond breaking, sf

s.

sf = sf
r + sf

s . �39�

Use of Eqs. �34� and �37� yields a tensor FN � FN equal to

e2
e3

e1

2

3

1

R

Θ

Φ

FIG. 3. Coordinate system for the macrofiber.

λƒ

ss
ƒsr

ƒ

σy

E

ss
ƒ

σy

-σy

E

λƒ

sr
ƒ

λƒ

FIG. 4. Analogical model for the microfibrils.
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FN � FN = 
�2 cos2 �

��

2
sin 2� cos �

��

2
sin 2� sin �

��

2
sin 2� cos �

1

�
sin2 � cos2 �

1

2�
sin2 � sin 2�

��

2
sin 2� sin �

1

2�
sin2 � sin 2�

1

�
sin2 � sin2 �

� , �40�

while the elongation in the microfibril � f results in

� f = 	FN	 =��2 cos2 � +
1

�
sin2 � . �41�

The tensile stress � is obtained by substituting Eqs. �39� and
�40� into Eq. �27�,

� = �
0


/2 
�sf
r + sf

r�����

��2 cos2 � +
1

�
sin2 �

��2�2 cos2 � −
1

�
sin2 ��sin �d� , �42�

where d�=2
 sin �d� and the integral is evaluated only in
the upper half-space.

The orientation index, Eq. �33�, now reads

 =
2


f f
�

0


/2

����
� cos � sin �

��2 cos2 � +
1

�
sin2 �

d� . �43�

Figure 5 shows the experimental results of tensile tests per-
formed in air of MAS fibers with three different degrees of
molecular alignment which were obtained as described else-
where �30�. Briefly, samples were submerged in water and
allowed to contract up to the supercontracted length LSC.
Then fibers were stretched up to the selected initial length LC
and allowed to dry. The alignment parameter � is used to
control the process and is defined as

� =
LC

LSC
− 1. �44�

Dried supercontracted fibers ��=0� are in their most disor-
dered molecular state and have been considered isotropic.

Figure 5 also presents the result of numerical computa-
tions for the three kinds of MAS fibers, where the mi-
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crofibrils were modeled using the analogical model shown in
Fig. 4 with K=1000 MPa, �y =300 MPa, and E=15 GPa.
Only two ��y and E� of the required parameters were ob-
tained by fitting to the tensile curves in Fig. 5, whereas Eq.
�38� had been previously determined from the elastomeric
behavior of MAS silk. A volume fraction of fibers, f f =1, was
assumed in all cases. Nominal stresses were computed by
dividing the tensile load by the cross-sectional area at the
beginning of the test. For each curve, the value of the orien-
tation index  is also shown, computed before stretching the
samples.

Whereas isotropic MAS fibers ��=0� were modeled with
a constant value of the distribution function of microfibrils
�= f f /2
, tensile curves of oriented fibers ��=0.45 and �
=0.90� were obtained from isotropic ones by a process re-
sembling the experimental procedure: First, the isotropic fi-
ber ��= f f /2
� is stretched up to the selected alignment—
i.e., �=1.45 or 1.90—while keeping the skidding blocks
disengaged �by setting �y =0�. This process simulates
stretching in water where the hydrogen bonds are deactivated
by water molecules. Then, the skidding blocks are activated
�restoration of hydrogen bonds upon drying� and the fiber is
unloaded. Finally, the fiber is loaded again, taking the length
and cross-sectional area at the beginning of this stage as
reference values for computing stress and strain.

As shown in Fig. 5, the agreement between experiments
and simulation is remarkable, especially taking into account
that the numerical modeling reproduces the experimental
procedure step by step. The proposed model is able to follow

the large deformation of MAS fibers and properly captures
their alignment process, easily incorporating the main opera-
tive microstructural mechanisms.

In addition, the model gives valuable information, such as
of the orientation index —Eq. �43�—which can be useful in
linking macroscopic parameters like the alignment parameter
� with the internal distribution of microfibrils. Figure 6
shows the evolution of the orientation index  with the ap-
plied stretching � for the three selected initial alignments �
=0, 0.45, and 0.91, corresponding to =0.5, 0.64, and 0.72.
The orientation index monotonically increases with �, al-
though this increment reduces progressively as the sample is
stretched. After a given stretching, the greater increments in
 are obtained for isotropic fibers, whereas highly oriented
samples show the lowest increases in orientation. Ideally, the
perfect alignment state =1 would be reached asymptoti-
cally for � tending to infinity. Nevertheless, the tensile
strength of MAS silk imposes a practical limit of about 0.9
for orientation indexes obtained by stretching.
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